
ZFS in the Manta storage system
OpenZFS Developer Summit
David Pacheco (@dapsays)
Joyent

What is Manta?

• Scaling the Unix philosophy to “Big Data”

2

What is the Unix Philosophy?

• 1986: Jon Bentley to Don Knuth: write a program that
demonstrates Literate Programming:

“Given a text file and an integer k, print the k most
common words in the file (and the number of their
occurrences) in decreasing frequency.”

• Knuth’s solution: 10 pages

3

What is the Unix Philosophy?

• McIlroy’s solution:

 tr -cs A-Za-z '\n' | tr A-Z a-z | \
 sort | uniq -c | sort -rn | sed ${1}q

4

The Unix philosophy

• Small programs that do one thing and do it well

• Plus several conventions:

• standardized input/output
• stream processing,
• newline-separated records, often with fields separated by

whitespace (or some other character) conventions

• Not just the tools, but an approach to building programs

5

Big Data: 1986 all over again?

• Google’s MapReduce paper sets up the same problem:
“Count of URL Access Frequency: The map function
processes logs of web page requests and outputs (URL;
1). The reduce function adds together all values for the
same URL and emits a {URL; total count} pair.”

• A natural fit for MapReduce, too:

 tr -cs A-Za-z '\n' | tr A-Z a-z | \
 sort | uniq -c | sort -rn | sed ${1}q

6

Map
Reduce

Challenges bringing Unix to Big Data

• Arbitrary-size data

• Arbitrary programs: OS is the abstraction

• Parallelization abstractions: map-reduce

• Multi-tenant

7

Storage

• NAS is nice, but H/A NAS is a challenge for CAP.

• Object stores look like a file system, but:

• No partial updates => consistency only affects metadata
• No volume management
• Universal protocol (HTTP)

• Internally: store objects as files for computation

8

OS Containers

• One kernel on bare metal, many virtual OS containers
(“zones”), each with its own root filesystem

• Much more efficient than hardware-based virtualization

• “root” in the zone does not compromise the rest of the
system

• Rich interface between “global zone” and individual
tenants’ zones

9

Putting it altogether: Manta

• Scalable, durable HTTP Object Store

• Namespace looks like a POSIX filesystem

• In situ compute as a first-class operation

• Quick demo

10

Bentley’s challenge, scaled up

• Arbitrarily scalable variant of McIlroy’s solution to Bentley’s
challenge:

 mfind /manta/public/examples/shakespeare | \
 mjob create -o -m "tr -cs A-Za-z '\n' | \
 tr A-Z a-z | sort | uniq -c" -r \
 "awk '{ x[\$2] += \$1 }
 END { for (w in x) {
 print x[w] \" \" w } }' | \
 sort -rn | sed ${1}q"

11

Manta overview

• Frontend: SSL, LB, API servers

• Metadata: postgres databases

• Storage: dedicated servers, nginx over ZFS + zones

• (plus a bunch of other stuff)

12

ZFS in Manta

• Deployment

• Storage

• Compute

• Metadata replication

13

ZFS for deployment

• Components deployed as zone images
(similar to what Docker is popularizing)

• Images are just zfs datasets
• Components are delivered as incremental changes

from a base image
• SDC takes care of distributing images

• Dynamic sizing: zones can be granted more
disk space with “zfs set quota”

14

ZFS for storage

• Durability: kind of important
• COW
• RAIDZ2
• Checksums

• Fast ZIL device (that’s client latency!)

• No volume management

• Well-known to this crowd, but these pieces are critical.

15

ZFS for compute

• User tasks get their own zones, with their own filesystem

• 128 zones per system

• Base image has 9000 packages installed,
using 36GB of disk space, so clones are clutch

• Users can ask for extra disk space: we just “zfs set quota”

• Filesystem is writable: users can do whatever they want.
When they’re done, we zfs rollback.

16

On zfs rollback ...

• Since launch, Manta has done ~16 million rollbacks
(almost two per minute per system, on average)

17

illumos#4504: space map corruption

• July, 2013: saw first panic in space_map_sync()

• December, 2013: first machine entered panic loop
(space map corruption on disk)

• At least one other machine entered a panic loop;
~10 others showed signs of on-disk space map corruption

• Matt Ahrens and George Wilson diagnosed the problem,
and Keith Wesolowski built tools for analyzing the space
maps on disk and developed procedures for booting
corrupted machines

• It was a dark time.18

illumos#3821 rollback + zil race

• We continue to see this issue periodically

• Two failure modes: panic, hang

• Manta survives panics quite well

• Manta does not deal well with OS hangs
(typically all zone rollbacks hang on that system,
eventually causing most jobs to hang)

• This issue seems streaky, and the D script for gathering
more data seems to make it less likely to happen.

19

ZFS for metadata replication

• Metadata tier: postgres shards

• Synchronous replication for durability

• When new peer shows up, use zfs send/receive to
bootstrap replication

20

Key takeaways

• Unix loves Big Data

• ZFS enables us to build a multi-tenant distributed storage
system without having to worry about the storing-bits-on-
disk problem

• ZFS’s pooled storage model is a key enabler for transient
OS containers

21

What we’d love from ZFS

• zdb enhancements

• hardening for “zfs receive” and “zpool import”

• continued stability: FCS quality all the time

22

References

• “Programming Pearls: a literate program”:
http://dl.acm.org/citation.cfm?id=315654

• “MapReduce:
Simplified Data Processing on Large Clusters”
http://research.google.com/archive/mapreduce.html

• More on Manta:
https://github.com/joyent/manta

23

http://dl.acm.org/citation.cfm?id=315654
http://dl.acm.org/citation.cfm?id=315654
http://research.google.com/archive/mapreduce.html
http://research.google.com/archive/mapreduce.html
https://github.com/joyent/manta
https://github.com/joyent/manta

ZFS in the Manta storage system
OpenZFS Developer Summit
David Pacheco (@dapsays)
Joyent

