
Scaling the Unix Philosophy to Big Data
Surge 2013
Mark Cavage (@mcavage)
David Pacheco (@dapsays)
Joyent

What is the Unix Philosophy?

• 1986: Jon Bentley to Don Knuth: write a program that
demonstrates Literate Programming

• Bentley asked Doug McIlroy to review it

• The challenge is still relevant today:

“Given a text file and an integer k, print the k most
common words in the file (and the number of their
occurrences) in decreasing frequency.”

2

Knuth’s solution

• 10 pages of a custom algorithm in WEB, a Pascal
derivative of his own invention

3

McIlroy’s solution

• One-liner:

 tr -cs A-Za-z '\n' | tr A-Z a-z | \
 sort | uniq -c | sort -rn | sed ${1}q

4

The Unix philosophy

• Small programs that do one thing and do it well

• Facilitated by several conventions:
• standardized input/output, stream processing, newline-separated

records, often with fields separated by whitespace (or some other
character) conventions

• Not just the tools, but an approach to building programs

5

Big Data: 1986 all over again?

• Google’s MapReduce paper sets up the same problem:
“Count of URL Access Frequency: The map function
processes logs of web page requests and outputs (URL;
1). The reduce function adds together all values for the
same URL and emits a {URL; total count} pair.”

• 10 years later, this is still the canonical example in most
M/R systems

• A natural fit for MapReduce, too:

 tr -cs A-Za-z '\n' | tr A-Z a-z | \
 sort | uniq -c | sort -rn | sed ${1}q6

Map
Reduce

Challenges bringing Unix to Big Data

• “Big Data” => need ability to store an arbitrary amount of
data

• Arbitrary programs => compute abstraction must be the
OS itself

• Parallel execution => still need orchestration abstractions
(MR)

• Cloud deployment => must support multi-tenancy

7

Scaling Storage

• Everybody at Surge probably knows this, but you’ve got 3
choices: block/file/object

• Block: So very many wrongs, but at minimum it’s opaque,
so out of the gate it’s a terrible abstraction

• File: NAS is what we really want, but H/A NAS is a lie. It’s
trying to be both C and A in CAP

• Object: “similar to” a file abstraction, with liberating
semantics...

8

Object Storage

• Object stores (typically) look like a file system, but aren’t
quite

• No partial updates

• No exposing volumes, or need to interface with existing
clients

• Universal protocol (HTTP)

• The challenge is how to make UNIX work with an Object
Store efficiently...

9

Virtualizing the OS

• One kernel on bare metal, many virtual OS containers
(“zones”), each with its own root filesystem

• Much more efficient than hardware-based virtualization

• “root” in the zone does not compromise the rest of the
system

• Rich interface between “global zone” and individual
tenants’ zones

10

Virtualizing the OS

11

SmartOS kernel
Vi

rtu
al

 N
IC

Vi
rtu

al
 N

IC

Virtual OS
(zone)

. .
 .

Vi
rtu

al
 N

IC

Vi
rtu

al
 N

IC

Virtual OS
(zone)

. .
 .

Vi
rtu

al
 N

IC

Vi
rtu

al
 N

IC

Virtual OS
(zone)

. .
 .

Vi
rtu

al
 N

IC

Vi
rtu

al
 N

IC

Virtual OS
(zone)

. .
 .

. . .
Provisioner

. . .

AMQP agents
(global zone)

Compute node
Tens/hundreds per

datacenterAM
Q

P
m

es
sa

ge
 b

us

Hyperlofs

• What if we had an object store, that left files as objects?

• Could we bring back the semantics of the FS when
running compute?

• Hyperlofs!

12

Hyperlofs

/*
 * Hyperlofs is a hybrid file system combining features of the tmpfs(7FS) and
 * lofs(7FS) file systems. It is modeled on code from both of these file
 * systems.
 *
 * The purpose is to create a high performance name space for files on which
 * applications will compute. Given a large number of data files with various
 * owners, we want to construct a view onto those files such that only a subset
 * is visible to the applications and such that the view can be changed very
 * quickly as compute progresses. Entries in the name space are not mounts and
 * thus do not appear in the mnttab. Entries in the name space are allowed to
 * refer to files on different backing file systems. Intermediate directories
 * in the name space exist only in-memory, ala tmpfs. There are no leaf nodes
 * in the name space except for entries that refer to backing files ala lofs.
 *
 * The name space is managed via ioctls issued on the mounted file system and
 * is mostly read-only for the compute applications. That is, applications
 * cannot create new files in the name space. If a file is unlinked by an
 * application, that only removes the file from the name space, the backing
 * file remains in place. It is possible for applications to write-through to
 * the backing files if the file system is mounted read-write.
 */

13

Putting it altogether: Manta

• Scalable, durable HTTP Object Store

• Namespace looks like a POSIX filesystem

• In situ compute as a first-class operation

14

Manta: design parameters

• CAP: Choose strong consistency
• CAP is not a monolithic choice:

Can build A on top of C, but choosing A prohibits C

• Must be highly-available (multi-AZ, tolerates transient
failures)

• Objects must be stored as simple files (so we can run
programs on them)

• Compute API should “feel like Unix”

15

Manta architecture

• Frontend: Node.js REST servers

• Metadata: Postgres (sharded, replicated for availability)

• Storage: ZFS

• Compute

• Asynchronous services (metering, garbage collection,
monitoring)

• Group membership: DNS on ZooKeeper

16

Frontend

• Stud: SSL Terminator

• HAProxy: HTTP Terminator/LB

• WebAPI: restify on Node.js

• Redis: authentication cache

17

Metadata tier

• Metadata copies on 2+ Postgres DBs

• Consistent hash on dirname ("/mark/stor/foo")

• Replication Topology Managed with Zookeeper

• Moray: custom Node.js key/value interface on top

18

Metadata tier

19

Storage: bare metal

20

Storage: bare metal

• 73 TiB (soon to be 100 TiB) in 4U, 256GB DRAM, RAIDZ2

• SmartOS (ZFS, Zones)

• Storage interface: Nginx

• Needs to support compute jobs, too (more later)

21

Storage architecture: each AZ

22

Storage architecture (X-DC deployment)

23

Storage: PUT request

24

Storage: GET request

25

Group Membership: DNS

• Custom (Node.js) DNS server

• Participants write an “ephemeral node” in ZK on startup

• This “mostly” works...NSCD sucks and ZK sucks

• But modulo *removing* capacity, it’s pretty nice

26

Compute: overview

• Users submit jobs, which specify pipelines to run either on
each input separately (map) or all inputs together
(reduce).

• Inputs: objects, accessed as regular files

• Outputs: saved as objects

• Orchestration: fleet of jobsupervisors (stateless)

• State: stored in one shard of the metadata tier (postgres)
(war stories coming up)

27

Virtualizing the OS

28

SmartOS kernel
Vi

rtu
al

 N
IC

Vi
rtu

al
 N

IC

Virtual OS
(zone)

. .
 .

Vi
rtu

al
 N

IC

Vi
rtu

al
 N

IC

Virtual OS
(zone)

. .
 .

Vi
rtu

al
 N

IC

Vi
rtu

al
 N

IC

Virtual OS
(zone)

. .
 .

Vi
rtu

al
 N

IC

Vi
rtu

al
 N

IC

Virtual OS
(zone)

. .
 .

. . .
Provisioner

Manta agent

. . .

AMQP agents
(global zone)

Compute node
Tens/hundreds per

datacenterAM
Q

P
m

es
sa

ge
 b

us

Compute: execution

• User programs run inside transient zones managed by
the service.

• Resource usage: capped but allows bursts

• Input: objects mapped in as RO files (for “map”) and
redirected as stdin.

• When done: “zfs rollback” and reboot the zone

• (All of this is behind-the-scenes)

• Demo

29

Bentley’s challenge, scaled up

• Arbitrarily scalable variant of McIlroy’s solution to Bentley’s
challenge:

 mfind /manta/public/examples/shakespeare | \
 mjob create -o -m "tr -cs A-Za-z '\n' | \
 tr A-Z a-z | sort | uniq -c" -r \
 "awk '{ x[\$2] += \$1 }
 END { for (w in x) {
 print x[w] \" \" w } }' | \
 sort -rn | sed ${1}q"

30

Everything else

• Metering (for billing): compute job run over log files
(JSON + bunyan)

• Monitoring: compute job run over log files
(JSON + bunyan)

• Garbage collection: compute job run over database dumps
of the metadata tier (JSON), plus manifests reported by
storage nodes

• ... (consistency audit, storage rebalancing, etc.)

31

Debugging Node.js

• Heavy use of MDB and DTrace

• bunyan (and live bunyan -p)

• Example: Frontend memory consumption
• Node v0.10.X “just fixed it” (via rewriting Streams API)

32

Zookeeper

• Don’t reboot “the leader”

• Don’t do too many reads...or writes...

• Don’t give it too little DRAM

• “No, don’t touch it, don’t even look at it!”

33

Nginx

• POSIX fsync() trivia

34

Postgres (job state)

• Lots of churn, 24/7 duty cycle (bad idea?)

• Vacuuming

• Analyzing

• Table fragmentation

35

Postgres (replication)

• Synchronous replication: master claims to be up-to-date,
slave has no idea about replication, no data flowing (!!!)

36

Key takeaways

• Unix loves Big Data

• Eventual consistency is not the only option

• When the storage system of record is globally available
and supports arbitrary compute, many use cases become
unified:
• CDN source (e.g., web assets)
• Log storage, processing, and analysis
• Image processing and video transcoding
• Indexing and data warehousing

37

The most important Big Data problem

38

References

• “Programming Pearls: a literate program”:
http://dl.acm.org/citation.cfm?id=315654

• “MapReduce:
Simplified Data Processing on Large Clusters”
http://research.google.com/archive/mapreduce.html

• Manta CAP tradeoffs:
http://dtrace.org/blogs/dap/2013/07/03/fault-tolerance-in-
manta/

• Manta Docs: http://apidocs.joyent.com/manta/

39

http://dl.acm.org/citation.cfm?id=315654
http://dl.acm.org/citation.cfm?id=315654
http://research.google.com/archive/mapreduce.html
http://research.google.com/archive/mapreduce.html
http://dtrace.org/blogs/dap/2013/07/03/fault-tolerance-in-manta/
http://dtrace.org/blogs/dap/2013/07/03/fault-tolerance-in-manta/
http://dtrace.org/blogs/dap/2013/07/03/fault-tolerance-in-manta/
http://dtrace.org/blogs/dap/2013/07/03/fault-tolerance-in-manta/
http://apidocs.joyent.com/manta/
http://apidocs.joyent.com/manta/

Scaling the Unix Philosophy
to Big Data

Surge 2013
Mark Cavage (@mcavage)
David Pacheco (@dapsays)
Joyent

