©Joyent

Scaling the Unix Philosophy to Big Data
Surge 2013

Mark Cavage (@mcavage)
David Pacheco (@dapsays)
Joyent

Joyent

1986: Jon Bentley to Don Knuth: write a program that
demonstrates Literate Programming

Bentley asked Doug Mcliroy to review it

The challenge is still relevant today:

“Given a text file and an integer Kk, print the k most
common words in the file (and the number of their
occurrences) in decreasing frequency.”

Knuth’s solution wJoyent

* 10 pages of a custom algorithm in WEB, a Pascal
derivative of his own invention

Mcllroy’s solution ©Joyent

* One-liner:

tr -cs A-Za-z '\n' | tr A-Z a-z | \
sort | uniq -c | sort -rn | sed ${1}qg

Joyent

Small programs that do one thing and do it well

Facilitated by several conventions:
e standardized input/output, stream processing, newline-separated

records, often with fields separated by whitespace (or some other
character) conventions

Not just the tools, but an approach to building programs

Joyent

Google’'s MapReduce paper sets up the same problem:
"Count of URL Access Frequency: The map function
processes logs of web page requests and outputs (URL,
1). The reduce function adds together all values for the
same URL and emits a {URL, total count} pair.”

10 years later, this is still the canonical example iIn most
M/R systems

A natural fit for MapReduce, too:
Map

o Reduce
tr -cs A-Za-z '\n' | tr A-Z a-z | \ A//’

sort | uniq -c | sort -rn | sed ${1}qg

Challenges bringing Unix to Big Data »Joyent

* "Big Data” => need ability to store an arbitrary amount of
data

* Arbitrary programs => compute abstraction must be the
OS itself

» Parallel execution => still need orchestration abstractions
(MR)

* Cloud deployment => must support multi-tenancy

Joyent

Everybody at Surge probably knows this, but you've got 3
choices: block/file/object

Block: So very many wrongs, but at minimum it's opaque,
so out of the gate it's a terrible abstraction

File: NAS is what we really want, but HHANAS is a lie. It's
trying to be both C and A in CAP

Object: “similar to” a file abstraction, with liberating
semantics...

Joyent

Object stores (typically) look like a file system, but aren't
quite

No partial updates

No exposing volumes, or need to interface with existing
clients

Universal protocol (HTTP)

The challenge is how to make UNIX work with an Object
Store efficiently...

Virtualizing the OS wJoyent

* One kernel on bare metal, many virtual OS containers
(‘zones”), each with its own root filesystem

* Much more efficient than hardware-based virtualization

* “root” In the zone does not compromise the rest of the
system

* Rich interface between “global zone™ and individual
tenants’ zones

©Joyent

Virtualizing the OS

Compute node
Tens/hundreds per
datacenter

A j
o
°9 OIN [enuin
2R
=
|
' DIN [BNHIA
S e —— 1
%9
S 5
m a3 DIN [enUIA
85 | OINEWA T
m C lmmmmmmmmmmm = ! —
£8 8
>)]
enui
DIN [eNUIA S
.............. ©
" &
% OIN[enuIpA & | O
O T e .
= DIN [BNMIA
i) = o
C (b)
o c
2R |
o o S
g8 |?°
s |2
A _____/

snq abessaw JOINY

11

Joyent

What if we had an object store, that left files as objects?

Could we bring back the semantics of the FS when
running compute?

Hyperlofs!

Hyperlofs ©Joyent

/%

Hyperlofs i1is a hybrid file system combining features of the tmpfs(7FS) and
lofs(7FS) file systems. It is modeled on code from both of these file
systems.

The purpose 1i1is to create a high performance name space for files on which
applications will compute. Given a large number of data files with various
owners, we want to construct a view onto those files such that only a subset
1s visible to the applications and such that the view can be changed very
quickly as compute progresses. Entries in the name space are not mounts and
thus do not appear in the mnttab. Entries in the name space are allowed to
refer to files on different backing file systems. Intermediate directories
in the name space exist only in-memory, ala tmpfs. There are no leaf nodes
in the name space except for entries that refer to backing files ala 1lofs.

The name space 1s managed via 1octls issued on the mounted file system and
1s mostly read-only for the compute applications. That 1s, applications
cannot create new files i1n the name space. If a file i1s unlinked by an
application, that only removes the file from the name space, the backing
file remains i1n place. It 1is possible for applications to write-through to
the backing files if the file system is mounted read-write.

/

% % % ok % oF % ok %k F ok * ok * ok * * * * *

%

Putting it altogether: Manta wJoyent

* Scalable, durable HTTP Object Store
* Namespace looks like a POSIX filesystem

* |n situ compute as a first-class operation

Joyent

CAP: Choose strong consistency
e CAP is not a monolithic choice:
Can build A on top of C, but choosing A prohibits C

Must be highly-available (multi-AZ, tolerates transient
failures)

Objects must be stored as simple files (so we can run
programs on them)

Compute API should “feel like Unix”

Joyent

Frontend: Node.js REST servers

Metadata: Postgres (sharded, replicated for availability)

Storage: ZFS

Compute

Asynchronous services (metering, garbage collection,
monitoring)

Group membership: DNS on ZooKeeper

Frontend Joyent

o Stud: SSL Terminator
* HAProxy: HTTP Terminator/LB
* WebAPI: restify on Node.|s

» Redis: authentication cache

Joyent

Metadata copies on 2+ Postgres DBs
Consistent hash on dirname ("/mark/stor/foo")
Replication Topology Managed with Zookeeper

Moray: custom Node.js key/value interface on top

Metadata tier ©Joyent

Storage: bare metal

Storage: bare metal »Joyent

73 TiB (soon to be 100 TiB) in 4U, 256GB DRAM, RAIDZ?2
 SmartOS (ZFS, Zones)
» Storage interface: Nginx

* Needs to support compute jobs, too (more later)

Storage architecture: each AZ

©Joyent

22

Manta data path

External HTTP requests
(use DNS to balance load across AZs)

Availability zone

|

Frontend services
(SSL, loadbalancers)

]_]L_

internal
DNS

, AP| services
Job services (REST API, miogin)

)

metadata metadata metadata metadata
(shard 1) (shard 2) B (shard N)

Storage node 1 Storage node ... Storage node M
(object storage, (object storage, (object storage,
job execution) job execution) job execution)

Stateless services @
() Metadata tier .
() Storage tier

®

Stateless services use internal DNS to
balance load across all AZs

Metadata shards have at least one

instance in each AZ

Copies of objects are stored in separate AZs
(up to three)

Storage architecture (X-DC deployment) ©@Joyent

LoadBalancer I | LoadBalancer | LoadBalancer
' | ‘ ‘

WebAP

DY
X7|
XN
%

T
A
K
&

Moﬂay

5
o

-
, ﬁ'
~
~
~
~
~
” N
”

~
~
~
~
~
”
”
-
-
-
-
”

Storage Storage Storage

Storage: PUT request

©Joyent

24

PUT /$me/stor/foo

AuthN/AuthZ

106-continue

Stream Data

Get Metadata

Attempt Stream

Stream Data

Save Metadata

Storage: GET request ©Joyent

25

GET /$me/stor/foo
AuthN/AuthZ

Lookup Metadata

GET /:custid/:objid

First storage node
to respond wins.
Stream Data
Steam Data

HTTP 280

Group Membership: DNS »Joyent

* Custom (Node.js) DNS server
* Participants write an "ephemeral node” in ZK on startup
* This "mostly” works...NSCD sucks and ZK sucks

* But modulo *removing™ capacity, it's pretty nice

Joyent

Users submit jobs, which specify pipelines to run either on

each input separately (map) or all inputs together
(reduce).

Inputs: objects, accessed as regular files
Outputs: saved as objects
Orchestration: fleet of jobsupervisors (stateless)

State: stored in one shard of the metadata tier (postgres)
(war stories coming up)

©Joyent

Virtualizing the OS

Compute node
Tens/hundreds per
datacenter

o
°9 OIN [enuin
2R
=
|
' DIN [BNHIA
S e —— 1
°%
S 5
m a3 DIN [eNUIA
85 | OINEWA T
T € fmmsmmsmmmmmmme- ! m_lu
2R X
>)]
enyl
DIN [BNHIA O
-
.............. (4v]
" &
) OIN[enuA | O
OB |emmramranee- _
= DIN [ENMIA
i) = o =
e))
53 (5|]|®
o © 2 ©
g2 |3 ||t
=5 |a m
A ~
A _____/

snq abessaw JOINY

28

Joyent

User programs run inside transient zones managed by
the service.

Resource usage: capped but allows bursts

Input: objects mapped in as RO files (for "map”) and
redirected as stdin.

When done: “zfs rollback”™ and reboot the zone
(All of this is behind-the-scenes)

Demo

Bentley’s challenge, scaled up Joyent

30

* Arbitrarily scalable variant of Mcllroy’s solution to Bentley's
challenge:

\

mfind /manta/public/examples/shakespeare | \
mjob create -o -m "tr -cs A-Za-z '\n' |
tr A-Z a-z | sort | uniq -c" -r \
"awk '{ x[\$2] += \$1 }
END { for (w in x) {
print x[w] \" \" w } }'" | \
sort -rn | sed ${1}qgq"

Joyent

Metering (for billing): compute job run over log files
(JSON + bunyan)

Monitoring: compute job run over log files
(JSON + bunyan)

Garbage collection: compute job run over database dumps
of the metadata tier (JSON), plus manifests reported by
storage nodes

... (consistency audit, storage rebalancing, etc.)

Debugging Node.|s wJoyent

* Heavy use of MDB and DTrace
* bunyan (and live bunyan -p)

* Example: Frontend memory consumption
e Node v0.10.X “just fixed it” (via rewriting Streams API)

Zookeeper »Joyent

* Don't reboot “the leader”
* Don’t do too many reads...or writes...
* Don't give it too little DRAM

* “No, don’t touch it, don't even look at it!”

Nginx ©Joyent

* POSIX fsync() trivia

Postgres (job state) wJoyent

* Lots of churn, 24/7 duty cycle (bad idea?)
* Vacuuming
* Analyzing

* Table fragmentation

Postgres (replication) wJoyent

* Synchronous replication: master claims to be up-to-date,
slave has no idea about replication, no data flowing (!!!)

Joyent

37

Unix loves Big Data
Eventual consistency Is not the only option

When the storage system of record is globally available
and supports arbitrary compute, many use cases become
unified:

e CDN source (e.g., web assets)

e Log storage, processing, and analysis

e |mage processing and video transcoding
e |ndexing and data warehousing

The most important Big Data problem ©Joyent

Joyent

"Programming Pearls: a literate program™:
http://dl.acm.org/citation.cfm?id=315654

"MapReduce:
Simplified Data Processing on Large Clusters”

http://research.google.com/archive/mapreduce.html
Manta CAP tradeoffs:
http://dtrace.org/blogs/dap/2013/07/03/fault-tolerance-in-
manta/

Manta Docs: http://apidocs.joyent.com/manta/

http://dl.acm.org/citation.cfm?id=315654
http://dl.acm.org/citation.cfm?id=315654
http://research.google.com/archive/mapreduce.html
http://research.google.com/archive/mapreduce.html
http://dtrace.org/blogs/dap/2013/07/03/fault-tolerance-in-manta/
http://dtrace.org/blogs/dap/2013/07/03/fault-tolerance-in-manta/
http://dtrace.org/blogs/dap/2013/07/03/fault-tolerance-in-manta/
http://dtrace.org/blogs/dap/2013/07/03/fault-tolerance-in-manta/
http://apidocs.joyent.com/manta/
http://apidocs.joyent.com/manta/

©Joyent

Scaling the Unix Philosophy
to Big Data

Surge 2013

Mark Cavage (@mcavage)

David Pacheco (@dapsays)
Joyent

