
Building a Real-Time Cloud Analytics
Service with Node.js

Surge 2011
David Pacheco (@dapsays)

Bryan Cantrill (@bcantrill)

Monday, October 3, 2011

Last year at #surgecon...

• Last year, we described the emergence of real-time data
semantics in web-facing applications — a trend that we dubbed
data-intensive real-time (DIRT)

• We discussed some of the ramifications of DIRT — among them
the need to observe the stack in production in terms of latency

• After Surge 2010, we got to work on a facility to do this...

• The facility — cloud analytics — was first stood up as a production
service at Joyent in March and shipped as a product in April

• Over the year, we have continued to deploy and improve it

• Cloud analytics is itself a DIRTy application; our implementation
and our production experiences may inform decisions for other
DIRTy apps

2

Monday, October 3, 2011

Agenda

Design objective

Architecture overview

Design choices

Production experiences

3

Monday, October 3, 2011

Design objective

• Need to focus on the source of the pain: latency
• How long a synchronous operation takes
• ... while a client is waiting for data
• ... while a user is waiting for a page to load

• Need to allow for ad hoc instrumentation

• Need to summarize the latency of thousands of operations —
without losing critical detail

• Need to summarize that across a distributed system

• Need to do this in real time

4

Monday, October 3, 2011

Visualizing latency as a scalar?

• Visualizing latency as a scalar (e.g., average) hides outliers — but
in a real-time system, it is the outliers that you care about!

• Using percentiles is better, but still hides crucial detail

5

Monday, October 3, 2011

Visualizing latency as a heatmap?

• x-axis = time, y-axis = latency, z-axis (color saturation) = count

• Many patterns are now visible (as in this example of MySQL query
latency), but critical detail is still missing

6

Monday, October 3, 2011

Visualizing latency as a 4D heatmap

• Hue can be used to express higher dimensionality

• x-axis = time, y-axis = latency, color saturation = count, color hue
= additional dimension (database table in this example)

7

Monday, October 3, 2011

Agenda

Design objective

Architecture overview

Design choices

Production experiences

8

Monday, October 3, 2011

Architectural components

• configuration service: manages which metrics are gathered

• instrumenter: uses DTrace to gather metric data
• one per compute node, not per OS instance
• reports data at 1Hz, summarized in-kernel

• aggregators: combine metric data from instrumenters

• client: presents metric data retrieved from aggregators

9

Monday, October 3, 2011

Datacenter headnode

Configuration service

Aggregators
(multiple instances for

parallelization)

Compute node

Instrumenter

Compute node

Instrumenter

Compute node

Instrumenter

Architectural overview

10

Monday, October 3, 2011

Datacenter headnode

Configuration service

Aggregators
(multiple instances for

parallelization)

Compute node

Instrumenter

Compute node

Instrumenter

Compute node

Instrumenter

Step 1: User creates an instrumentation

11

HTTP user/API request: create instrumentation

AMQP: create

AMQP: create

Monday, October 3, 2011

Datacenter headnode

Configuration service

Aggregators
(multiple instances for

parallelization)

Compute node

Instrumenter

Compute node

Instrumenter

Compute node

Instrumenter

Step 2: Instrumenters report data

12

AMQP: raw data
(repeat @1Hz)

Monday, October 3, 2011

Datacenter headnode

Configuration service

Aggregators
(multiple instances for

parallelization)

Compute node

Instrumenter

Compute node

Instrumenter

Compute node

Instrumenter

Step 3: Users retrieve data

13

HTTP user/API request: retrieve data

HTTP: retrieve

Monday, October 3, 2011

Inside the instrumenter

14

Instrumenter
(Node.js)

DTrace
(kernel)

Config service
(Node.js)

libdtrace

node-libdtrace

“dtrace” backend

AMQP

Other
compute
nodes Virtual

OS
Virtual

Machine

Virtual
Machine

Virtual
OS

Virtual
OS

Virtual
Machine

.d data

Aggregators
(Node.js)

Config Data

Monday, October 3, 2011

Agenda

Introduction

Architecture overview

Design choices

Production experiences

15

Monday, October 3, 2011

Node.js

• node.js is a JavaScript-based framework for building event-
oriented servers:

16

 var http = require(‘http’);

 http.createServer(function (req, res) {
 res.writeHead(200,
 {'Content-Type': 'text/plain'});
 res.end('Hello World\n');
 }).listen(8124, "127.0.0.1");

 console.log(‘Server running at http://127.0.0.1:8124!’);

Monday, October 3, 2011

http://127.0.0.1:8124
http://127.0.0.1:8124

The energy behind Node.js

• node.js is a confluence of three ideas:
• JavaScriptʼs rich support for asynchrony (i.e. closures)
• High-performance JavaScript VMs (e.g. V8)
• Solid system abstractions (i.e. UNIX)

• Because everything is asynchronous, node.js is ideal for delivering
scale in the presence of long-latency events

17

Monday, October 3, 2011

Why Node.js

• Our previous experience: building complex
multi-threaded systems in C
• Event-oriented model sounds pretty appealing
• Event-oriented is possible in C, easier in Node.js

• Why Node.js:
• minimize latency between gathering data and serving it to clients

(especially in the face of service failure)
• fast development

• Why not:
• Poor observability (no pstack, dtrace, mdb, debugger)
• Limited static analysis tools (compared to C compiler and lint)
• No postmortem debugging

• At the very least, good choice for prototype.

• If it didn’t work out, we wanted to know why.
18

Monday, October 3, 2011

Why AMQP

• Why messaging?
• Decouples system components

• Why AMQP?
• Standard protocol with existing libraries, servers, and tools

• Why rabbitmq?
• We were already using it elsewhere
• Reputation of reliability and performance

• Why not?
• Single broker = performance bottleneck
• Wanted to quantify that before choosing a more complex architecture

19

Monday, October 3, 2011

Why HTTP/JSON

• Obviously: universal language for web APIs
• Both browsers and Node.js have (mostly) first-class support for both HTTP and

JSON

• But why not WebSockets?
• Actually, why WebSockets? Usual answer: polling is inefficient
• TCP connection overhead (obviated by HTTP keep-alive)
• HTTP header processing (hard to imagine being a performance problem)
• Extra request processing (not applicable to us)

• Since our data is essentially continuous, buffered at 1-second intervals...
• ... there’s no “extra request” overhead. Polling is actually what we want.

• Cons of WebSockets
• Complexity
• Observability (how do you measure server-side latency?)
• Awkward model for historical (non real-time) data

• We’d want to quantify the performance problem before introducing this
complexity

20

Monday, October 3, 2011

Why DTrace

• Comprehensive tracing of both kernel and
application-level events in real-time

• Scales arbitrarily with:
• number of events (in situ aggregation)
• number of customer instances

(global visibility, OS-level virtualization)

• Suitable for production systems
• Safe
• Minimal overhead
• Zero disabled probe effect

• Extensible via SDT, USDT

• (It’s also the only game in town.)

21

Monday, October 3, 2011

Client-side vs. server-side rendering

• Line graphs: client retrieves raw data, renders graphs using flot,
d3, etc.

• Heatmaps: client retrieves heatmap image generated on-the-fly by
the server
• Con: lots of compute (requires parallelizing aggregators, but that’s actually easy)
• Con: makes rich interaction somewhat more difficult
• Pro: heatmap is itself the most compact representation of the data

22

Monday, October 3, 2011

Agenda

Design objective

Architecture overview

Design choices

Production experiences

23

Monday, October 3, 2011

Problem: Node.js C++ add-ons

• We need Node.js add-ons (native extensions) for DTrace, kstat,
libpng, ...

• Add-ons are written in C++, which has no stable binary interface
• node and its add-ons must be built with the same compiler and version

(or suffer nasty consequences!)
• Solution: CA delivers a bundle with “node” plus binary add-ons

• WAF-based build process is easy to get wrong
• e.g., build process looking in wrong place for header files
• e.g., binaries built without links to dependent libraries (fail at runtime)
• All we can do is fix these problems when we run into them, but it can be painful.

24

Monday, October 3, 2011

Problem: Node.js limits

• Each aggregator’s load could be limited by size of the Node heap

• Each aggregator’s load could be limited by 1 CPU (heatmap
generation)

• Solution: parallelize workload at instrumentation level
• Spin up “ncpus” aggregators
• Each new instrumentation gets assigned randomly to one aggregator, which

stores the data and services all requests for raw data and heatmap
• Config service proxies HTTP requests to the appropriate aggregator

25

Monday, October 3, 2011

Problem: Node.js observability

• Hard to figure out what a program is doing (or did do)

• Solutions: we built several tools to help with this:
• cactl: uses AMQP to ping, status-check, or summarize the state of all CA

services
• amqpsnoop: watch all AMQP messages, or filter by arbitrary criteria

(works only for messages on topic exchanges)
• node-panic: primitive postmortem debugging for Node.js
• When a server crashes or does the wrong thing, it must be possible to dump

all state immediately so you can restart the service and debug later
• “cactl” can also send the command to panic via AMQP

• We also use snoop and Wireshark to understand network traffic

26

Monday, October 3, 2011

Problem: observing spinning programs

• Shortly after first production deployment, we found one of the
aggregators spinning
• Not responding to AMQP or HTTP, not invoking system calls
• pstack showed it was running JavaScript, but we had no way of seeing what it

was running
• No event loop => couldn’t trigger panic via AMQP
• No event loop => couldn’t use SIGUSR1 to start the debugger agent

• Several ways to improve this:
• Mitigation: Randomize aggregator selection to mitigate failure mode
• Solution: Change Node.js SIGUSR1 to open debugger port immediately
• Solution: Created “ncore” tool as part of node-panic to use SIGUSR1 to

generate dump (including stacktrace!) of program stuck in infinite loop
• Solution (future): jstack() DTrace action

• Scary part: we haven’t ever seen this problem since.

27

Monday, October 3, 2011

Problem: synchronous DTrace enabling

• DTrace can take several seconds to enable probes on a system

• Currently, this operation is synchronous in node-libdtrace, so
instrumenters report no data while this is going on

• Challenging to make this async because libdtrace only supports
one concurrent compile at a time due to yacc limitation (!)

• Solution: eio_custom() and asynchronous interface

28

Monday, October 3, 2011

Node: The Good Parts

• Development was fast:
• Time to functional CA prototype: 2 weeks
• Time to production for CA: 4 months
• The prototype evolved significantly, but was never thrown out

• CPU, memory usage have not been a problem for aggregators or
configsvc.

• Events (e.g., HTTP request) typically shown on screen within 2-3
seconds
• Raw value requests served within a few milliseconds
• Heatmap requests served around 50-75ms
• Component failures do not result in latency bubbles for everyone else

• Tools have given us adequate visibility into service status
(and where they haven’t, we’ve built more tools)

29

Monday, October 3, 2011

Problem: AMQP exclusive queues

• AMQP allows queues to have an exclusive consumer, enforced by
the broker

• What happens when that consumer crashes?

• What happens when that consumer’s system crashes?
• Broker has no way of knowing.
• On restart, the consumer is rejected from its own queue.

• Possible solution: AMQP heartbeating (requires client support)

• Solution: when consumer sees RESOURCE_LOCKED error, it
pings itself, waits a while, and tries again.

• Note: without AMQP, we’d instead have problems managing
connections to multiple components claiming to be the same
service.

30

Monday, October 3, 2011

Problem: AMQP connectivity

• Components can get disconnected from the broker
• network failure, broker failure, server failure, or even configuration change

• Components must handle this while in the middle of sending data
• Solution: arbitrary “write” operations can fail with “socket disconnected” errors
• node-panic was crucial for understanding Node.js Socket state in these cases

• Components must detect this while idle
• Possible solution: AMQP heartbeating (requires client support)
• Solution: each component periodically pings itself

• Components must keep trying to reconnect
• and what do we do with messages sent in the meantime?

• Note: these problems exist with direct connections, too.

31

Monday, October 3, 2011

Problem: RabbitMQ performance with many
bindings

• During first (largest) major production deployment, rabbitmq lost its
mind
• 90+% CPU utilization (on a 16-way box)
• Forever-increasing memory utilization (upwards of 400MB) while queue

lengths all zero
• No visibility into “dark queue” of internal work

• Spent over a week trying to reproduce in development
• Eventually reproduced by creating 1500+ bindings on a topic exchange and

sending about 100 messages per second.

• Mitigation: use rabbit’s management API to build monitoring tools

• Possible solution: upgrade rabbitmq to 2.4.0 or later for “fast topic
routing”

• Solution: use “direct” exchange rather than “topic” exchange
• (breaks amqpsnoop)

32

Monday, October 3, 2011

AMQP: The Good Parts

• Per-component configuration is trivial: just needs the broker IP

• Routing key abstraction simplifies failure modes around
component crashes

• With the topic routing issue worked around, rabbitmq has easily
handled as much traffic as we’ve thrown at it with low (enough)
latency (~100ms)

• With the glaring exception of internally queued work, rabbit
provides good observability into the state of the distributed system
• e.g., message traffic on queues and channels
• e.g., bindings and channels associated with each queue

33

Monday, October 3, 2011

Summary

• On the most important early decisions (Node.js, AMQP/RabbitMQ,
HTTP/JSON, DTrace), we haven’t regretted any of these choices.

• Many of the problems were not specific to these technologies
• Observability: a problem with just about everything but C
• Network failure: a problem whether using AMQP or direct connections
• Such limitations can be overcome (by building new tools and fixing the software)

• Some of these were inherent limitations ...
• Node.js scaling past 1 thread (but that was very easy to work around in our

case)

• Still believe it has been and will be much easier to address these
problems than to make the alternatives work

• Overall goal is met: visualizing performance data in real-time

• Demo on production system or GTFO!
34

Monday, October 3, 2011

Appendix

35

Monday, October 3, 2011

References

• Tools
• node-panic: https://github.com/joyent/node-panic
• amqpsnoop: https://github.com/davepacheco/node-amqpsnoop
• javascriptlint: https://github.com/davepacheco/javascriptlint
• jsstyle: https://github.com/davepacheco/jsstyle

• Cloud Analytics
• http://dtrace.org/blogs/dap/2011/03/01/welcome-to-cloud-analytics/
• http://dtrace.org/blogs/bmc
• http://dtrace.org/blogs/brendan
• http://dtrace.org/blogs/rm

36

Monday, October 3, 2011

https://github.com/joyent/node-panic
https://github.com/joyent/node-panic
https://github.com/davepacheco/node-amqpsnoop
https://github.com/davepacheco/node-amqpsnoop
https://github.com/davepacheco/javascriptlint
https://github.com/davepacheco/javascriptlint
https://github.com/davepacheco/jsstyle
https://github.com/davepacheco/jsstyle
http://dtrace.org/blogs/dap/2011/03/01/welcome-to-cloud-analytics/
http://dtrace.org/blogs/dap/2011/03/01/welcome-to-cloud-analytics/
http://dtrace.org/blogs/bmc
http://dtrace.org/blogs/bmc
http://dtrace.org/blogs/brendan
http://dtrace.org/blogs/brendan
http://dtrace.org/blogs/rm
http://dtrace.org/blogs/rm

