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Last year at #surgecon...

• Last year, we described the emergence of real-time data 
semantics in web-facing applications — a trend that we dubbed 
data-intensive real-time (DIRT)

• We discussed some of the ramifications of DIRT — among them 
the need to observe the stack in production in terms of latency

• After Surge 2010, we got to work on a facility to do this...

• The facility — cloud analytics — was first stood up as a production 
service at Joyent in March and shipped as a product in April

• Over the year, we have continued to deploy and improve it

• Cloud analytics is itself a DIRTy application; our implementation 
and our production experiences may inform decisions for other 
DIRTy apps 
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Agenda

Design objective

Architecture overview

Design choices

Production experiences
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Design objective 

• Need to focus on the source of the pain: latency
• How long a synchronous operation takes
• ... while a client is waiting for data
• ... while a user is waiting for a page to load

• Need to allow for ad hoc instrumentation

• Need to summarize the latency of thousands of operations — 
without losing critical detail

• Need to summarize that across a distributed system

• Need to do this in real time
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Visualizing latency as a scalar?

• Visualizing latency as a scalar (e.g., average) hides outliers — but 
in a real-time system, it is the outliers that you care about!

• Using percentiles is better, but still hides crucial detail
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Visualizing latency as a heatmap?

• x-axis = time, y-axis = latency, z-axis (color saturation) = count

• Many patterns are now visible (as in this example of MySQL query 
latency), but critical detail is still missing
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Visualizing latency as a 4D heatmap

• Hue can be used to express higher dimensionality

• x-axis = time, y-axis = latency, color saturation = count, color hue 
= additional dimension (database table in this example)
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Agenda

Design objective

Architecture overview

Design choices

Production experiences
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Architectural components

• configuration service: manages which metrics are gathered

• instrumenter: uses DTrace to gather metric data
• one per compute node, not per OS instance
• reports data at 1Hz, summarized in-kernel

• aggregators: combine metric data from instrumenters

• client: presents metric data retrieved from aggregators
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Datacenter headnode

Configuration service

Aggregators
(multiple instances for 

parallelization)

Compute node

Instrumenter

Compute node

Instrumenter

Compute node

Instrumenter

Architectural overview
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Datacenter headnode

Configuration service

Aggregators
(multiple instances for 

parallelization)

Compute node

Instrumenter

Compute node

Instrumenter

Compute node

Instrumenter

Step 1: User creates an instrumentation
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HTTP user/API request: create instrumentation

AMQP: create

AMQP: create
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Datacenter headnode

Configuration service

Aggregators
(multiple instances for 

parallelization)

Compute node

Instrumenter

Compute node

Instrumenter

Compute node

Instrumenter

Step 2: Instrumenters report data
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AMQP: raw data
(repeat @1Hz)
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Datacenter headnode

Configuration service

Aggregators
(multiple instances for 

parallelization)

Compute node

Instrumenter

Compute node

Instrumenter

Compute node

Instrumenter

Step 3: Users retrieve data
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HTTP user/API request: retrieve data

HTTP: retrieve

Monday, October 3, 2011



Inside the instrumenter
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Agenda

Introduction

Architecture overview

Design choices

Production experiences
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Node.js

• node.js is a JavaScript-based framework for building event-
oriented servers:
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    var http = require(‘http’);

    http.createServer(function (req, res) {
           res.writeHead(200,
    {'Content-Type': 'text/plain'});
           res.end('Hello World\n');
    }).listen(8124, "127.0.0.1");

    console.log(‘Server running at http://127.0.0.1:8124!’);
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The energy behind Node.js

• node.js is a confluence of three ideas:
• JavaScriptʼs rich support for asynchrony (i.e. closures)
• High-performance JavaScript VMs (e.g. V8)
• Solid system abstractions (i.e. UNIX)

• Because everything is asynchronous, node.js is ideal for delivering 
scale in the presence of long-latency events
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Why Node.js

• Our previous experience: building complex
multi-threaded systems in C
• Event-oriented model sounds pretty appealing
• Event-oriented is possible in C, easier in Node.js

• Why Node.js:
• minimize latency between gathering data and serving it to clients

(especially in the face of service failure)
• fast development

• Why not:
• Poor observability (no pstack, dtrace, mdb, debugger)
• Limited static analysis tools (compared to C compiler and lint)
• No postmortem debugging

• At the very least, good choice for prototype.

• If it didn’t work out, we wanted to know why.
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Why AMQP

• Why messaging?
• Decouples system components

• Why AMQP?
• Standard protocol with existing libraries, servers, and tools

• Why rabbitmq?
• We were already using it elsewhere
• Reputation of reliability and performance

• Why not?
• Single broker = performance bottleneck
• Wanted to quantify that before choosing a more complex architecture
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Why HTTP/JSON

• Obviously: universal language for web APIs
• Both browsers and Node.js have (mostly) first-class support for both HTTP and 

JSON

• But why not WebSockets?
• Actually, why WebSockets?  Usual answer: polling is inefficient
• TCP connection overhead (obviated by HTTP keep-alive)
• HTTP header processing (hard to imagine being a performance problem)
• Extra request processing (not applicable to us)

• Since our data is essentially continuous, buffered at 1-second intervals...
• ... there’s no “extra request” overhead.  Polling is actually what we want.

• Cons of WebSockets
• Complexity
• Observability (how do you measure server-side latency?)
• Awkward model for historical (non real-time) data

• We’d want to quantify the performance problem before introducing this 
complexity
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Why DTrace

• Comprehensive tracing of both kernel and
application-level events in real-time

• Scales arbitrarily with:
• number of events (in situ aggregation)
• number of customer instances

(global visibility, OS-level virtualization) 

• Suitable for production systems
• Safe
• Minimal overhead
• Zero disabled probe effect

• Extensible via SDT, USDT

• (It’s also the only game in town.)
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Client-side vs. server-side rendering

• Line graphs: client retrieves raw data, renders graphs using flot, 
d3, etc.

• Heatmaps: client retrieves heatmap image generated on-the-fly by 
the server
• Con: lots of compute (requires parallelizing aggregators, but that’s actually easy)
• Con: makes rich interaction somewhat more difficult
• Pro: heatmap is itself the most compact representation of the data
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Problem: Node.js C++ add-ons

• We need Node.js add-ons (native extensions) for DTrace, kstat, 
libpng, ... 

• Add-ons are written in C++, which has no stable binary interface
• node and its add-ons must be built with the same compiler and version

(or suffer nasty consequences!)
• Solution: CA delivers a bundle with “node” plus binary add-ons

• WAF-based build process is easy to get wrong
• e.g., build process looking in wrong place for header files
• e.g., binaries built without links to dependent libraries (fail at runtime)
• All we can do is fix these problems when we run into them, but it can be painful.
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Problem: Node.js limits

• Each aggregator’s load could be limited by size of the Node heap

• Each aggregator’s load could be limited by 1 CPU (heatmap 
generation)

• Solution: parallelize workload at instrumentation level
• Spin up “ncpus” aggregators
• Each new instrumentation gets assigned randomly to one aggregator, which 

stores the data and services all requests for raw data and heatmap
• Config service proxies HTTP requests to the appropriate aggregator
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Problem: Node.js observability

• Hard to figure out what a program is doing (or did do)

• Solutions: we built several tools to help with this:
• cactl: uses AMQP to ping, status-check, or summarize the state of all CA 

services
• amqpsnoop: watch all AMQP messages, or filter by arbitrary criteria

(works only for messages on topic exchanges)
• node-panic: primitive postmortem debugging for Node.js
• When a server crashes or does the wrong thing, it must be possible to dump 

all state immediately so you can restart the service and debug later
• “cactl” can also send the command to panic via AMQP

• We also use snoop and Wireshark to understand network traffic
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Problem: observing spinning programs

• Shortly after first production deployment, we found one of the 
aggregators spinning
• Not responding to AMQP or HTTP, not invoking system calls
• pstack showed it was running JavaScript, but we had no way of seeing what it 

was running
• No event loop => couldn’t trigger panic via AMQP
• No event loop => couldn’t use SIGUSR1 to start the debugger agent

• Several ways to improve this:
• Mitigation: Randomize aggregator selection to mitigate failure mode
• Solution: Change Node.js SIGUSR1 to open debugger port immediately
• Solution: Created “ncore” tool as part of node-panic to use SIGUSR1 to 

generate dump (including stacktrace!) of program stuck in infinite loop
• Solution (future): jstack() DTrace action

• Scary part: we haven’t ever seen this problem since.
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Problem: synchronous DTrace enabling

• DTrace can take several seconds to enable probes on a system

• Currently, this operation is synchronous in node-libdtrace, so 
instrumenters report no data while this is going on

• Challenging to make this async because libdtrace only supports 
one concurrent compile at a time due to yacc limitation (!)

• Solution: eio_custom() and asynchronous interface
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Node: The Good Parts

• Development was fast:
• Time to functional CA prototype: 2 weeks
• Time to production for CA: 4 months
• The prototype evolved significantly, but was never thrown out

• CPU, memory usage have not been a problem for aggregators or 
configsvc.

• Events (e.g., HTTP request) typically shown on screen within 2-3 
seconds
• Raw value requests served within a few milliseconds
• Heatmap requests served around 50-75ms
• Component failures do not result in latency bubbles for everyone else

• Tools have given us adequate visibility into service status
(and where they haven’t, we’ve built more tools)
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Problem: AMQP exclusive queues

• AMQP allows queues to have an exclusive consumer, enforced by 
the broker

• What happens when that consumer crashes?

• What happens when that consumer’s system crashes?
• Broker has no way of knowing.
• On restart, the consumer is rejected from its own queue.

• Possible solution: AMQP heartbeating (requires client support)

• Solution: when consumer sees RESOURCE_LOCKED error, it 
pings itself, waits a while, and tries again.

• Note: without AMQP, we’d instead have problems managing 
connections to multiple components claiming to be the same 
service.
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Problem: AMQP connectivity

• Components can get disconnected from the broker
• network failure, broker failure, server failure, or even configuration change

• Components must handle this while in the middle of sending data
• Solution: arbitrary “write” operations can fail with “socket disconnected” errors
• node-panic was crucial for understanding Node.js Socket state in these cases

• Components must detect this while idle
• Possible solution: AMQP heartbeating (requires client support)
• Solution: each component periodically pings itself

• Components must keep trying to reconnect
• and what do we do with messages sent in the meantime?

• Note: these problems exist with direct connections, too.

31

Monday, October 3, 2011



Problem: RabbitMQ performance with many 
bindings

• During first (largest) major production deployment, rabbitmq lost its 
mind
• 90+% CPU utilization (on a 16-way box)
• Forever-increasing memory utilization (upwards of 400MB) while queue 

lengths all zero
• No visibility into “dark queue” of internal work

• Spent over a week trying to reproduce in development
• Eventually reproduced by creating 1500+ bindings on a topic exchange and 

sending about 100 messages per second.

• Mitigation: use rabbit’s management API to build monitoring tools

• Possible solution: upgrade rabbitmq to 2.4.0 or later for “fast topic 
routing”

• Solution: use “direct” exchange rather than “topic” exchange
• (breaks amqpsnoop)

32

Monday, October 3, 2011



AMQP: The Good Parts

• Per-component configuration is trivial: just needs the broker IP

• Routing key abstraction simplifies failure modes around 
component crashes

• With the topic routing issue worked around, rabbitmq has easily 
handled as much traffic as we’ve thrown at it with low (enough) 
latency (~100ms) 

• With the glaring exception of internally queued work, rabbit 
provides good observability into the state of the distributed system
• e.g., message traffic on queues and channels
• e.g., bindings and channels associated with each queue
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Summary

• On the most important early decisions (Node.js, AMQP/RabbitMQ, 
HTTP/JSON, DTrace), we haven’t regretted any of these choices.

• Many of the problems were not specific to these technologies
• Observability: a problem with just about everything but C
• Network failure: a problem whether using AMQP or direct connections
• Such limitations can be overcome (by building new tools and fixing the software)

• Some of these were inherent limitations ...
• Node.js scaling past 1 thread (but that was very easy to work around in our 

case)

• Still believe it has been and will be much easier to address these 
problems than to make the alternatives work

• Overall goal is met: visualizing performance data in real-time

• Demo on production system or GTFO!
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Appendix

35

Monday, October 3, 2011



References

• Tools
• node-panic: https://github.com/joyent/node-panic
• amqpsnoop: https://github.com/davepacheco/node-amqpsnoop
• javascriptlint: https://github.com/davepacheco/javascriptlint
• jsstyle: https://github.com/davepacheco/jsstyle

• Cloud Analytics
• http://dtrace.org/blogs/dap/2011/03/01/welcome-to-cloud-analytics/
• http://dtrace.org/blogs/bmc
• http://dtrace.org/blogs/brendan
• http://dtrace.org/blogs/rm
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