
How Joyent Operates
Node.js in Production

David Pacheco (@dapsays)

How Joyent Observes
Node.js in Production

David Pacheco (@dapsays)

Node in production at Joyent

• Joyent Public Cloud (runs Smart Data Center)

• Smart Data Center (SDC)

• Manta

First principles

•When a problem is seen in production:

• Restore service immediately

• Root-cause the problem fully -- the first time

Easier said than done

• Production is far more constrained than development:

• Cannot edit code and restart
(hard to manage, and many problems are transient)

• Cannot stop and attach a debugger
(way too disruptive to service)

• Traditional debuggers (e.g., gdb) generally don’t work
on dynamic environments

Kang

• Super simple toolset for browsing state of a running
distributed system

• Used as the basis for dashboards

vasync

• “async”-like library

• forEach, forEachParallel, pipeline, queue, barrier

• Stores state in an object (not closures)

• Can view state in kang, MDB, REPL, etc.

Example: Cloud Analytics Launch

Example: Cloud Analytics Launch

• Symptom: UI freeze

• Quick health check: 1 of 16 data aggregators not
responding to application-level ping

• Process is 100% on-CPU, in userland

• Doing 0 syscalls (no network activity, no file activity)

•WTF do we do?

Core files

• Includes all of your Node program’s state

• Create with gcore(1)

• View with MDB

Core files for crashes

• Best of both goals (service restoration, debuggability)

• Configure Node to dump core on crashes:

• v0.10.7 and earlier:
On uncaughtException, call process.abort()

• v0.10.8 and later:
Use --abort-on-uncaught-exception
(keeps stack intact)

Debugging core dumps

• Very different methodology than printf-debugging!

• Easy to get turned off because you don’t know where to
start, but you’d be surprised what you theories you can
prove (or disprove) with a core dump!

JavaScript heap analysis

• Core files afford more expensive analysis

• findjsobjects dumps a frequency count of all
objects by “duck type”

• Good for finding big leaks

When static state isn’t enough

• Idea: add console.log, restart, reproduce

• Lots of problems with that, but the basic idea is good:
get more information about what the program is doing

Bunyan

• Node.js logging library

• Format: Newline-separated JSON

• Bonus: runtime log snooping with bunyan -p

DTrace

DTrace basics

• System has hundreds of thousands of probes

• User writes script to take certain actions based on
those probes

• Designed for production

• Safe above all else

• “Dynamic” => Zero overhead when disabled

• In situ aggregation => low overhead when enabled

• Demo

Tracing Node.js

• Node DTrace provider has built-in probes:

• http server request start/done

• http client request start/done

• garbage collection start/done

• See nhttpsnoop

Example: tracing request latency

/var/tmp/nhttpsnoop -cgsl
TIME PID PROBE LATENCY METHOD PATH
[0.068996] 15832 server -> - GET /jobs
[0.073913] 15832 server <- 4.916ms GET /jobs
[0.396989] 16511 client -> - GET /configs/65879ef3
[0.397242] 29441 server -> - GET /configs/65879ef3
[0.409515] 29441 server <- 12.272ms GET /configs/65879ef3
[0.409611] 16511 client <- 12.622ms GET /configs/65879ef3
[0.411069] 16511 gc <- 0.863ms - -

Tracing the system

• You can also use built-in probes!

• memory allocation: malloc, sbrk, mmap

• system activity: syscalls

• process blocks

• Often, it’s useful to record a JavaScript stack trace
when these events happen (or aggregate on the
stacktrace)

Tracing your Node app

• You can add your own app-specific probes

Example: restify tracing
./restify-latency.d -p 25561
^C
ROUTE LATENCY (milliseconds)

 key min .---------------------------. max | count
 getconfigs < 0 : ▃ ▂▂ ▃: >= 25 | 6
 headagentprobes < 0 : █ : >= 25 | 5
 listvms < 0 : ▂▅ ▂ : >= 25 | 5

HANDLER LATENCY (milliseconds)

 key min .---------------------------. max | count
 ...
 listvms addProxies < 0 : █ : >= 25 | 5
 listvms bunyan < 0 : █ : >= 25 | 5
 listvms checkMoray < 0 : █ : >= 25 | 5
 listvms checkWfapi < 0 : █ : >= 25 | 5
 listvms handler-0 < 0 : █ : >= 25 | 5
 listvms listVms < 0 : ▂▅ ▂ : >= 25 | 5
 listvms loadVm < 0 : █ : >= 25 | 5
 listvms parseAccept < 0 : █ : >= 25 | 5
 listvms parseBody < 0 : █ : >= 25 | 5
 listvms parseDate < 0 : █ : >= 25 | 5
 listvms parseQueryString < 0 : █ : >= 25 | 5
 listvms readBody < 0 : █ : >= 25 | 5

On-CPU performance

•We use DTrace-based profiling:

dtrace -n profile-97/pid == $target/
{ @[jstack(80, 8192)] = count(); }’

•We visualize the results with flame graphs (demo)

Off-CPU performance

• Use DTrace to instrument start/done of asynchronous
events (e.g., filesystem I/O, network request)

• Can visualize with a heat map

Development-time tips

• Compile everything with -fno-omit-frame-pointer
(otherwise, nothing involving stacktraces works)

• Hang all state off a global singleton object
(once you find that object, you can find all state)

• Store extra debugging state
(e.g., nretries, time_last_tried)

• Use prefixes on object property names
(helps ::findjsobjects find specific objects -- and
helps with grep too!)

• Use libraries that do these things (e.g., vasync)

Log analysis

• SDC and Manta logs are uploaded to Manta hourly

•We have some automated jobs, lots of ad-hoc jobs to
analyze them

Platform dependencies

•We run everything on SmartOS (illumos-based).

• MDB: Nothing analogous on GNU/Linux
(but TJ is working on reading Linux cores in MDB!)

• DTrace:

• System probes, custom probes: illumos, OS X, BSD

• JS stacks: illumos only

• There’s SystemTap, prof, and the Oracle DTrace
port... (unclear if any have JS support)

• bunyan, vasync, restify, kang: all work everywhere

Summary

• Fatal failures: core dumps

• Non-fatal failures:

• Kang, core dumps

• Logs: bunyan, bunyan -p

• DTrace (system probes, Node probes, app probes)

• Performance (on-CPU, off-CPU)

• Memory analysis (both JS and native)

Summary: key tools and modules

• Tools:
• mdb: modular debugger

• gcore: generate core file for a process

• jsontool: JSON from the command line

• stackvis: generate flame graphs

• Modules:
• bunyan (logging)

• restify (REST/HTTP server, HTTP client)

• vasync (asynchronous control flow)

• kang (expose internal state over HTTP, plus CLI)

• dtrace-provider (application-level probes)

Bonus: native heap analysis

• pmap -x: show VA mappings, RSS

•We link with libumem, which has great debugging tools

• ::findleaks: finds leaks in native code

• ::walk umem_alloc_4096
• ptr::whatis
• ::walk buftcl | ::bufctl -a PTR -v
• ::umastat

• Example: Wal-Mart memory leak

Native heap tracing

•With DTrace, trace:

• malloc(3C) / free(3C) / brk(2)

• operator new / operator delete

• Save a JavaScript stack trace each time

JavaScript heap tracing

•With DTrace, trace mmap(2) and munmap(2)

