
Debugging Node.js in Production:
Postmortem Debugging and Performance Analysis

Fluent 2012
David Pacheco (@dapsays)
Joyent

The Rise of Node.js

• We see Node.js as the confluence of three ideas:
• JavaScript’s friendliness and rich support for asynchrony (i.e., closures)
• High-performance JavaScript VMs (e.g., V8)
• Time-tested system abstractions (i.e. Unix)

• Event-oriented model delivers consistent performance in the
presence of long latency events (i.e. no artificial latency bubbles)

• Node.js is displacing C for a lot of high-performance, highly reliable
core infrastructure software (at Joyent alone: DNS, DHCP,
SNMP, LDAP, key value stores, public-facing web services, ...).

• This has been great for rapid development, but historically has
come with a cost in debuggability.

2

The case of the run-away Node service

• February, 2011: Joyent is preparing to launch no.de (free PaaS)

• Cloud Analytics service is intermittently unresponsive

• Traced the problem to a rogue data aggregator (one of 16) using
100% of 1 CPU core. Not responding using any means we had of
querying it (HTTP, AMQP).

• How do you debug this?

3

Debugging a run-away Node program

• What’s the stack look like?

• What system calls is it making? (None (!))

• Can’t add logging, because we don’t know how to reproduce.

• ... but it’s still exhibiting these symptoms. Can’t we figure out why?!

4

Text

 v8::internal::Runtime::SetObjectProperty+0x36d()
 v8::internal::Runtime_SetProperty+0x73()
 0xfe7601f6()
 0xfbff31d8()
 0xfc468f59()
 0xfe8e51cf()
 0xfe760841()
 0xfe8e3dc8()
 0xfe8e24a4()
 ...

Text

 ...
 ev_run+0x406()
 uv_run+0x1c()
 node::Start+0xa9()
 main+0x1b()
 _start+0x83()

Imagine a simpler problem

• The software: a moderately complex concurrent service (where
concurrent requests can affect one another).

• The deployment: in production with anywhere from a handful to a
hundred instances.

• The problem: every day or so, one of the instances crashes,
leaving behind just a stacktrace where an assertion was blown.

• How do you debug this (assuming the stacktrace is not sufficient)?

5

A first approach

• Add instrumentation (printf) and redeploy.

• How easy is it to deploy a new version? How risky is it?
What’s the impact? Are you sure you’ll only need to do this once?

• What if it’s a very common code path that you need to instrument?

• What if this isn’t your code, but a customer’s that you’re
supporting? You have no control over deployment, and you lose
credibility each time you ask a customer to do this.

• But if you’re lucky and the problem is relatively simple, this can
work okay.

6

A better approach

• For C programs, we have rich tools for postmortem analysis.

• When a program crashes, the OS saves a core dump. The
program can be immediately restarted to restore service quickly
so that engineers can debug the problem asynchronously.

• Using the debugger on the core dump, you can inspect all internal
program state: global variables, threads, and objects.

• Historically, existing tools have been unable to meaningfully
observe JIT’d environments like Node, and those environments
have not developed equally rich tools to address these problems.

• Node is not alone! The state of the art is no better in Python or
Ruby, and not nearly solved for Java or Erlang either.

7

Why is it hard?

• Native abstractions != JavaScript abstractions:
Native postmortem debugging doesn’t need to present any
abstractions that don’t already exist in the system (symbols and
functions). A JavaScript VM would need to present the native
structures as their JavaScript counterparts.

• Some of these abstractions don’t even exist explicitly in the
language itself (like JavaScript’s queue of pending events).

• You either need a custom (or extensible) debugger that can iterate
VM internal structures from a core file, or the VM itself needs to
serialize JavaScript state (heap, stack, etc.) when the program
crashes (and on-demand) and provide a tool to examine that.

8

Postmortem debugging for Node.js

• mdb_v8: based on MDB, the illumos modular debugger.

• Given a core file (from gcore(1), a segfault, abort(3C)), examine:
• Current call stack, including JavaScript functions and arguments.
• Given a pointer, print out as a C++ object, or print its JavaScript counterpart.
• Scan the heap to identify how many instances of each object type exist.

(incredible visibility into memory usage)

• Implementation:
• V8 (libv8.a) includes a small amount (a few KB) of metadata that describes the

heap’s classes, type information, and class layouts.
• mdb_v8 knows how to identify stack frames, iterate function arguments, iterate

object properties, and walk basic V8 structures (arrays, functions, strings).
• mdb_v8 uses the debug metadata encoded in the binary to avoid hardcoding the

way heap structures are laid out in memory.

• Demo

9

Remember that run-away Node program?

• When we first saw this in February, 2011, we had no way to peer
inside and see what this program was doing. We saved a core
dump, in case we might one day have the technology to read it.
We also added other instrumentation, and we expected to see it
again shortly (since we saw it so quickly in the first place).

• We didn’t see it again until October, 2011, while the mdb_v8 work
was underway. We applied what we had to a new core file.

10

And the winner is:

> ::jsstack

8046a9c <anonymous> (as exports.bucketize) at lib/heatmap.js position 7838

8046af8 caAggrValueHeatmapImage at lib/ca/ca-agg.js position 48960

...

> 8046a9c::jsframe -v

8046a9c <anonymous> (as exports.bucketize)

 func: fc435fcd

 file: lib/heatmap.js

 posn: position 7838

 arg1: fc070719 (JSObject)

 arg2: fc070709 (JSArray)

> fc070719::jsprint

{

 base: 1320886447,

 height: 281,

 width: 624,

 max: 11538462,

 min: 11538462,

 ...

}
11

Invalid input resulted in infinite loop in JavaScript
Time to root cause: 10 minutes

Debugging live programs

• The same postmortem technology can be used to inspect live state
without disrupting the running program using gcore(1).

• Sometimes, you want something to trace runtime activity.

12

DTrace

• Provides comprehensive tracing of both kernel and application-
level events in real-time.

• Scales arbitrarily with the number of traced events.
(first class in situ data aggregation)

• Suitable for production systems because it’s safe, has minimal
overhead (usually no disabled probe effect), and can be enabled/
disabled dynamically (no application restart required).

• Open-sourced in 2005. Available on illumos (and Solaris-derived
systems), BSD, and MacOS (Linux ports in progress).

13

DTrace example: MySQL query latency

#	
 	
 dtrace –n ‘
mysql*:::query-start { self->start = timestamp; }

mysql*:::query-done /self->start/ {
 @[“nanoseconds”] = quantize(timestamp – self->start);

 self->start = 0;
}’

nanoseconds
 value ------------- Distribution ------------- count
 1024 | 0
 2048 | 16
 4096 |@ 93
 8192 | 19
 16384 |@@@ 232
 32768 |@@ 172
 65536 |@@@@@@ 532
 131072 |@@@@@@@@@@@@@@@@@ 1513
 262144 |@@@@@ 428
 524288 |@@@ 258
 1048576 |@ 127
 2097152 |@ 47
 4194304 | 20
 8388608 | 33
 16777216 | 9
 33554432 | 0

14

Profiling Node with DTrace

• DTrace provides a “ustack()” action for collecting a user-level
stacktrace at the given probe point.

• This is useful when debugging to see who’s doing what (e.g.,
where am I calling malloc(3C), or who’s calling open(2)).

• Can also be used for profiling using “profile” provider that fires a
probe N times per second on each CPU.

• What about JIT’d code?

15

ustack helpers

• For JIT’d code, DTrace supports ustack helper mechanism, by
which the VM itself includes logic to translate from
 (frame pointer, instruction pointer) -> human-readable function name

• When jstack() action is processed in probe context (in the kernel),
DTrace invokes the helper to translate frames:

Before After

0xfe772a8c toJSON at native date.js position 39314

0xfe84d962 BasicJSONSerialize at native json.js position 8444

0xfea6b6ed BasicSerializeObject at native json.js position 7622

0xfe84db11 BasicJSONSerialize at native json.js position 8444

0xfeaba5ee stringify at native json.js position 10128

16

Node.js Flame Graph

• Visualizing profiling output:

• http://www.cs.brown.edu/~dap/ca-flamegraph.svg

17

http://www.cs.brown.edu/~dap/ca-flamegraph.svg
http://www.cs.brown.edu/~dap/ca-flamegraph.svg

V8 ustack helper

• The ustack helper has to do much of the same work that mdb_v8
does to identify stack frames and pick apart heap objects.

• The implementation is written in D, and subject to all the same
constraints as other DTrace scripts (and then some): no functions,
no iteration, no if/else.

• Particularly nasty pieces include expanding ConsStrings and
binary searching to compute line numbers.

• The helper only depends on V8, not Node.js. With MacOS support
for ustack helpers, we could use the same helper to profile
webapps running under Chrome!

18

More real-world examples

• The infinite loop problem we saw earlier was debugged with
mdb_v8, and could have also been debugged with DTrace.

• @izs used mdb_v8‘s heap scanning to zero in on a memory leak
in Node.js that was seriously impacting several users, including
Voxer.

• @mranney (Voxer) has used Node profiling + flame graphs to
identify several performance issues (unoptimized OpenSSL
implementation, poor memory allocation behavior).

• Debugging RangeError (stack overflow, with no stack trace).

19

Final thoughts

• Node is a great environment for building complex system software
and distributed systems. But in order to achieve the reliability we
expect from such systems, we must be able to understand both
fatal and non-fatal failure in production from the first
occurrence.

• One year ago: we had no way to solve the “infinite loop” problem
without adding more logging and hoping to see it again.

• Now, we have tools to inspect both running and crashed Node
programs (mdb_v8 and the DTrace ustack helper), and we’ve used
them to debug problems in minutes that we either couldn’t solve at
all before or which took days or weeks to solve.

• Future work: there’s lots more heap analysis to do, including
finding variables by name (for globals and module-”globals”)

20

• Thanks:
• @bcantrill for ::findjsobjects
• @mraleph for help with V8 and landing patches
• @izs and the Node core team for help integrating DTrace and MDB support
• @mranney and Voxer for pushing Node hard, running into lots of issues, and

helping us refine the tools to debug them. (God bless the early adopters!)

• For more info:
• http://dtrace.org/blogs/dap/2012/04/25/profiling-node-js/
• http://dtrace.org/blogs/dap/2012/01/13/playing-with-nodev8-postmortem-debugging/
• https://github.com/joyent/illumos-joyent/blob/master/usr/src/cmd/mdb/common/modules/v8/mdb_v8.c
• https://github.com/joyent/node/blob/master/src/v8ustack.d

21

http://dtrace.org/blogs/dap/2012/04/25/profiling-node-js/
http://dtrace.org/blogs/dap/2012/04/25/profiling-node-js/
http://dtrace.org/blogs/dap/2012/01/13/playing-with-nodev8-postmortem-debugging/
http://dtrace.org/blogs/dap/2012/01/13/playing-with-nodev8-postmortem-debugging/
https://github.com/joyent/illumos-joyent/blob/master/usr/src/cmd/mdb/common/modules/v8/mdb_v8.c
https://github.com/joyent/illumos-joyent/blob/master/usr/src/cmd/mdb/common/modules/v8/mdb_v8.c
https://github.com/joyent/node/blob/master/src/v8ustack.d
https://github.com/joyent/node/blob/master/src/v8ustack.d

Debugging Node.js in Production:
Postmortem Debugging and Performance Analysis

Fluent 2012
David Pacheco (@dapsays)
Joyent

